هوش مصنوعی
هوش مصنوعی را باید عرصه پهناور تلاقی و ملاقات بسیاری از دانشها، علوم، و فنون قدیم و جدید دانست. ریشهها و ایدههای اصلی آن را باید در فلسفه، زبانشناسی، ریاضیات، روانشناسی، نورولوژی، و فیزیولوژی نشان گرفت و شاخهها، فروع، و کاربردهای گونهگونه و فراوان آن را در علوم رایانه، علوم مهندسی، علوم زیستشناسی و پزشکی، علوم ارتباطات و زمینههای بسیار دیگر.
هدف هوش مصنوعی بطور کلی ساخت ماشینی است که بتواند فکر کند. اما برای دسته بندی و تعریف ماشینهای متفکر، میبایست به تعریف هوش پرداخت. همچنین به تعاریفی برای آگاهی و درک نیز نیازمندیم و در نهایت به معیاری برای سنجش هوش یک ماشین نیازمندیم.
با وجودی که برآورده سازی نیازها مهمترین عامل توسعه و رشد هوش مصنوعی بودهاست، هم اکنون از فراوردههای این شاخه از علوم در صنایع پزشکی، رباتیک، پیش بینی وضع هوا، نقشهبرداری و شناسایی عوارض، تشخیص صدا، تشخیص گفتار و دست خط و بازیها و نرم افزارهای رایانهای استفاده میشود.
مباحث هوش مصنوعی پیش از بوجود آمدن علوم الکترونیک، توسط فلاسفه و ریاضی دانانی نظیر بول Boole که اقدام به ارائه قوانین و نظریههایی در باب منطق نمودند، مطرح شده بود. در سال ۱۹۴۳، با اختراع رایانههای الکترونیکی، هوش مصنوعی، دانشمندان را به چالشی بزرگ فراخواند. بنظر میرسید، فناوری در نهایت قادر به شبیه سازی رفتارهای هوشمندانه خواهد بود.
با وجود مخالفت گروهی از متفکرین با هوش مصنوعی که با دیده تردید به کارآمدی آن مینگریستند تنها پس از چهار دهه، شاهد تولد ماشینهای شطرنج باز و دیگر سامانههای هوشمند در صنایع گوناگون هستیم. نام هوش مصنوعی در سال ۱۹۶۵ میلادی به عنوان یک دانش جدید ابداع گردید. البته فعالیت درزمینه این علم از سال ۱۹۶۰ میلادی شروع شده بود.
بیشتر کارهای پژوهشی اولیه در هوش مصنوعی بر روی انجام ماشینی بازیها و نیز اثبات قضیههای ریاضی با کمک رایانهها بود. در آغاز چنین به نظر میآمد که رایانهها قادر خواهند بود چنین اموری را تنها با بهره گرفتن از تعداد بسیار زیادی کشف و جستجو برای مسیرهای حل مسئله و سپس انتخاب بهترین آنها به انجام رسانند.
هنوز تعریف دقیقی که مورد قبول همه دانشمندان این علم باشد برای هوش مصنوعی ارائه نشدهاست، و این امر، به هیچ وجه مایه تعجب نیست. چرا که مقوله مادر و اساسیتر از آن، یعنی خود هوش هم هنوز بطور همهجانبه و فراگیر تن به تعریف ندادهاست.
اکثر تعریفهایی که در این زمینه ارایه شدهاند بر پایه یکی از چهار باور زیر قرار میگیرند:
سیستمهایی که به طور منطقی فکر میکنند.
سیستمهایی که به طور منطقی عمل میکنند.
سیستمهایی که مانند انسان فکر میکنند.
سیستمهایی که مانند انسان عمل میکنند.
شاید بتوان هوش مصنوعی را این گونه توصیف کرد: هوش مصنوعی عبارت است از مطالعه این که چگونه کامپیوترها را میتوان وادار به کارهایی کرد که در حال حاضر انسانها آنها را بهتر انجام میدهند
فلسفه هوش مصنوعی
بطور کلی ماهیت وجودی هوش به مفهوم جمع آوری اطلاعات, استقرا و تحلیل تجربیات به منظور رسیدن به دانش و یا ارایه تصمیم میباشد . در واقع هوش به مفهوم به کارگیری تجربه به منظور حل مسایل دریافت شده تلقی میشود.
هوش مصنویی علم و مهندسی ایجاد ماشینهایی با هوش با به کارگیری از کامپیوتر و الگوگیری از درک هوش انسانی و نهایتا دستیابی به مکانیزم هوش مصنوعی در سطح هوش انسانی میباشد.
در مقایسه هوش مصنوعی با هوش انسانی می توان گفت که انسان قادر به مشاهده و تجزیه و تحلیل مسایل در جهت قضاوت و اخذ تصمیم میباشد در حالی که هوش مصنوعی مبتنی بر قوانین و رویه هایی از قبل تعبیه شده بر روی کامپیوتر میباشد.
در نتیجه علی رغم وجود کامپیوترهای بسیار کارا و قوی در عصر حاضر ما هنوز قادر به پیاده کردن هوشی نزدیک به هوش انسان در ایجاد هوشهای مصنوعی نبوده ایم. بطور کلی، هوش مصنوعی را می توان از زوایای متفاوتی مورد بررسی و مطالعه قرار داد.
مابین هوش مصنوعی به عنوان یک هدف، هوش مصنوعی به عنوان یک رشته تحصیلی دانشگاهی، و یا هوش مصنوعی به عنوان مجموعۀ فنون و راه کارهایی که توسط مراکز علمی مختلف و صنایع گوناگون تنظیم و توسعه یافته است باید تفاوت قائل بود.
مدیریت پیچیدگی
ایجاد و ابداع فنون و تکنیکهای لازم برای مدیریّت پیچیدگی را باید به عنوان هستۀ بنیادین تلاشهای علمی و پژوهشی گذشته، حال، و آینده، در تمامی زمینههای علوم رایانه، و به ویژه، در هوش مصنوعی معرّفی کرد. شیوهها و تکنیکهای هوش مصنوعی، در واقع، برای حل آن دسته از مسائل به وجود آمده است که به طور سهل و آسان توسط برنامهنویسی تابعی، یا شیوههای ریاضی قابل حل نبودهاند.
در بسیاری از موارد، با پوشانیدن و پنهان ساختن جزئیّات فاقد اهمّیّت است که بر پیچیدگی فائق میآییم، و میتوانیم بر روی بخشهایی از مسئله متمرکز شویم که مهمتر است. تلاش اصلی، در واقع، ایجاد و دستیابی به لایهها و ترازهای بالاتر و بالاتر تجرید را نشانه میرود، تا آنجا که، سرانجام برنامههای کامپوتری درست در همان سطحی کار خواهند کرد که خود انسانها به کار مشغولند.
به یاری پژوهشهای گسترده دانشمندان علوم مرتبط، هوش مصنوعی از آغاز پیدایش تاکنون راه بسیاری پیمودهاست. در این راستا، تحقیقاتی که بر روی توانایی آموختن زبانها انجام گرفت و همچنین درک عمیق از احساسات، دانشمندان را در پیشبرد این علم، یاری کردهاست.
یکی از اهداف متخصصین، تولید ماشینهایی است که دارای احساسات بوده و دست کم نسبت به وجود خود و احساسات خود آگاه باشند. این ماشین باید توانایی تعمیم تجربیات قدیمی خود در شرایط مشابه جدید را داشته و به این ترتیب اقدام به گسترش دامنه دانش و تجربیاتش کند.
برای نمونه به رباتی هوشمند بیاندیشید که بتواند اعضای بدن خود را به حرکت درآورد، او نسبت به این حرکت خود آگاه بوده و با سعی و خطا، دامنه حرکت خود را گسترش میدهد، و با هر حرکت موفقیت آمیز یا اشتباه، دامنه تجربیات خود را وسعت بخشیده و سر انجام راه رفته و یا حتی میدود و یا به روشی برای جابجا شدن، دست مییابد، که سازندگانش، برای او، متصور نبودهاند.
دانشمندان، عموما برای تولید چنین ماشینهایی، از تنها مدلی که در طبیعت وجود دارد، یعنی توانایی یادگیری در موجودات زنده بخصوص انسان، بهره میبرند. آنها بدنبال ساخت ماشینی مقلد هستند، که بتواند با شبیهسازی رفتارهای میلیونها یاخته مغز انسان، همچون یک موجود متفکر به اندیشیدن بپردازد.
هوش مصنوعی که همواره هدف نهایی دانش رایانه بودهاست، اکنون در خدمت توسعه علوم رایانه نیز است. زبانهای برنامه نویسی پیشرفته، که توسعه ابزارهای هوشمند را ممکن میسازند، پایگاههای دادهای پیشرفته، موتورهای جستجو، و بسیاری نرمافزارها و ماشینها از نتایج پژوهشهای هوش مصنوعی بهره میبرند.
سیستمی که عاقلانه فکر کند. سامانهای عاقل است که بتواند کارها را درست انجام دهد. در تولید این سیستمها نحوه اندیشیدن انسان مد نظر نیست. این سیستمها متکی به قوانین و منطقی هستند که پایه تفکر آنها را تشکیل داده و آنها را قادر به استنتاج و تصمیم گیری مینماید.
آنها با وجودی که مانند انسان نمیاندیشند، تصمیماتی عاقلانه گرفته و اشتباه نمیکنند. این ماشینها لزوما درکی از احساسات ندارند. هم اکنون از این سیستمها در تولید عاملها در نرم افزارهای رایانهای، بهره گیری میشود. عامل تنها مشاهده کرده و سپس عمل میکند.
سیستمهای خبره زمینهای پرکاربرد در هوش مصنوعی و مهندسی دانش است که با توجّه به نیاز روز افزون جوامع بر اتخاذ راه حلها و تصمیمات سریع در مواردی که دانشهای پیچیده و چندگانه انسانی مورد نیاز است، بر اهمیت نقش آنها افزوده هم میشود.
سیستمهای خبره به حل مسائلی میپردازند که به طور معمول نیازمند تخصصهای کاردانان و متخصّصان انسانیست. به منظور توانایی بر حل مسائل در چنین سطحی، دسترسی هرچه بیشتر اینگونه سامانهها به دانش موجود در آن زمینه خاص ضروری میگردد.